Concept of a thin film memory transistor based on ZnO nanoparticles insulated by a ligand shell.

نویسندگان

  • Johannes Hirschmann
  • Hendrik Faber
  • Marcus Halik
چکیده

In this work, we report on the synthesis and the electrical properties of ZnO nanoparticles, which differ in their organic shell. The introduction of a 2-ethylhexanoate shell instead of a common acetate shell has an impact on the accessible size of the ZnO nanoparticles and changes the electrical properties of thin films in transistors. While acetate covered ZnO particles behave as a semiconductor with an electron mobility of 0.38 cm(2) V(-1) s(-1), the 2-ethylhexanoate ligand shell inhibits a charge transport resulting in insulating films (with an average ε(r) = 9.4). These films can be reconverted to semiconductive layers by removing the ligand shell with oxygen plasma treatment or they can be used as a solution processed dielectric layer in organic transistors. Its use as dielectric allows low voltage device operation and shows potential application as a charge storage layer as needed in non-volatile memory transistors.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Enhanced Formaldehyde-Sensing Properties of P3HT-ZnO Hybrid Thin Film OTFT Sensor and Further Insight into Its Stability

A thin-film transistor (TFT) having an organic-inorganic hybrid thin film combines the advantage of TFT sensors and the enhanced sensing performance of hybrid materials. In this work, poly(3-hexylthiophene) (P3HT)-zinc oxide (ZnO) nanoparticles' hybrid thin film was fabricated by a spraying process as the active layer of TFT for the employment of a room temperature operated formaldehyde (HCHO) ...

متن کامل

Photocatalytic degradation of an azo textile dye with manganese-doped ZnO nanoparticles coated on glass

Mn doped ZnO nanocomposite thin film coated on glass by a simple spin-coating method was used to degrade an azo textile dye from aqueous environment. Mn doped ZnO nanocomposite thin film was characterized by means of X-ray diffraction (XRD) and scanning electron microscopy (SEM). The photo-reduction activity of photocatalyst was evaluated using an azo textile dye as organic contaminant irradiat...

متن کامل

Photocatalytic degradation of an azo textile dye with manganese-doped ZnO nanoparticles coated on glass

Mn doped ZnO nanocomposite thin film coated on glass by a simple spin-coating method was used to degrade an azo textile dye from aqueous environment. Mn doped ZnO nanocomposite thin film was characterized by means of X-ray diffraction (XRD) and scanning electron microscopy (SEM). The photo-reduction activity of photocatalyst was evaluated using an azo textile dye as organic contaminant irradiat...

متن کامل

A Novel Approach to use ZnO Thin Film as a Switching in Dynamic Random Access Memory (DRAM) Cell

Resistance switching random access memory (RRAM) has drawn considerable attention for the application in nonvolatile memory element in semiconductor memory devices. A ZnO thin film now assumed to be useful for dynamic random access memory (DRAM) cell. In this paper we provide a framework to its use as a switching ON or OFF in DRAM cell. In this type of memory cell the ZnO thin film has a lot of...

متن کامل

Nano-Floating Gate Memory Devices Composed of ZnO Thin-Film Transistors on Flexible Plastics

Nano-floating gate memory devices were fabricated on a flexible plastic substrate by a low-temperature fabrication process. The memory characteristics of ZnO-based thin-film transistors with Al nanoparticles embedded in the gate oxides were investigated in this study. Their electron mobility was found to be 0.18 cm(2)/V·s and their on/off ratio was in the range of 10(4)-10(5). The threshold vol...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Nanoscale

دوره 4 2  شماره 

صفحات  -

تاریخ انتشار 2012